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Simple model for a two-component gas flow in the presence of macroscopic scatterers
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The nonequilibrium state of a two-component gas mixture in the presence of macroscopic scatterers is
investigated. The general solution of a set of the kinetic equations is obtained in the operator form. The model
presentation of the collision operator is derived in the spirit of the Bhatnagar-Gross-Krook method. The
rigorous solution of a set of the derived model kinetic equations is found.
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I. INTRODUCTION

We aim to extend the simple and effective idea of t
Bhatnagar-Gross-Krook~hereafter BGK! approximation@1#
to the consideration of nonequilibrium states of a ma
component particle system in the presence of macrons.
problem concerns a variety of physical applications such
the kinetics of a phonon-impuriton system of a superfl
mixture of helium isotopes@2–5# and the phonon-electro
system in metals@4,6,7#, to mention a few.

The first successful attempt to extend the BGK method
the analysis of a gas mixture is due to Morse@8#. Regretta-
bly, this model is restricted to the consideration of a mixtu
of classical gases and cannot strictly be applied to the ab
mentioned systems. Furthermore, the model of Morse~in its
conventional form! does not make it possible to consider t
size effect in the many-component gas mixture. The sa
holds true for the model introduced by Sirovich@9# and some
other extensions of the BGK approach~see @1# and refer-
ences therein!.

The above arguments give a motivation for a refinem
of the BGK approximation, namely, we are going to gen
alize this method in two different respects. First, we w
construct an approximation that is applicable to the anal
of not only classical but also quantum gas mixtures. Seco
we will adopt our method to the investigation of effects d
to particle collisions with external scatterers~macrons!.

The results obtained in this paper imply no restrictions
a particular particle statistics. The extension of the Lore
approximation to the case of a quantum gas mixture pres
a nontrivial mathematical problem. Effects due to the g
statistics bring specific features to the exact formulation
the BGK approximation. This allows one to conclude that,
well as the above mentioned physical implications, the ma
ematical aspects of the problem considered are themselv
interest.

The paper is organized as follows. Section II presents
mathematical treatment of the above described problem
the framework of the exact kinetic approach. In Sec. III
model for the interparticle collision operator is proposed
investigate the general solution of the kinetic equation
model kinetic equation is solved in Sec. IV. A brief summa
is given in Sec. V.
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II. EXACT CONSIDERATION OF THE KINETIC
PROBLEM

Our first step is to solve a set of the kinetic equations
the operator form. For the sake of simplicity we restrict o
consideration to the steady state of a two-component
mixture. In order to formulate exactly the kinetic problem
is necessary to consider the Hilbert spacesRi( i 51,2) of the
momentum functionsg(pW i) with scalar products of the form

^h~pW i !,g~pW i !& i52E f 0
( i )8S « i

T Dh* ~pW i !g~pW i !dG i . ~1!

Here, T is the temperature,pW i and « i the momentum and
energy of a particle of speciesi, dG i the corresponding vol-
ume element of the momentum phase space,f 0

( i ) the equilib-
rium distribution function of the gas of thei th species, andpi
the moduli of the corresponding vectors. The prime deno
differentiation with respect to the argument, and the Bol
mann constant is set equal to 1.

We introduce further the Hilbert spaceR of vectors
uf(pW 1),w(pW 2)& t with the componentsf(pW 1) andw(pW 2) be-
longing to the Hilbert spacesR1 andR2, respectively. The
scalar product in the spaceR is defined by the equality

^f1~pW 1!,w1~pW 2!uf2~pW 1!,w2~pW 2!&

5^f1~pW 1!,f2~pW 1!&11^w1~pW 2!,w2~pW 2!&2 . ~2!

A set of kinetic equations describing a nonequilibriu
state of the two-component system can be represented in
operator form as

S11ug&1S12ug&1Lug&5uV& ~3!

where ug&5ug1 ,g2&
t, uV&5uvW 1¹W 1 ,vW 2¹W 2&

t, ¹W i5(]/]rW)(« i

2m i)/T1XW i /T, XW i are the external forces,v i
W5]« i /]pW i is

the velocity of particles of speciesi, f i are the distribution

functions, gi5@ f 0
( i )8(« i /T)#21( f i2 f 0

( i )) are small correc-
tions to the equilibrium distribution functionsf 0

( i ) , and m i

are the chemical potentials. The superscriptt denotes the
transposition, and all gradients and external forces are s
posed to be directed along thez axis. We defined the colli-
sion operators in Eq.~3! by
©2001 The American Physical Society04-1
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S115S Ŝ11 0

0 Ŝ22
D , S125S Ŝ12

(1) Ŝ12
(2)

Ŝ21
(1) Ŝ21

(2)D , L5S L̂1 0

0 L̂2
D ,

Ŝii gi5E Wii ~pW i ,pW i 1
upW i 2

,pW i 3
!@16 f 0

( i )~pi !#
21

3@16 f 0
( i )~pi 2

!# f 0
( i )~pi 1

!@16 f 0
( i )~pi 3

!#

3@gi~pW i 2
!1gi~pW i 3

!2gi~pW i !2gi~pW i 1
!#dG i 1

dG i 2
dG i 3

,

~4!

Ŝi j
( i )gi5E W12~pW i ,pW j upW i 1

,pW j 1
!@16 f 0

( i )~pi !#
21

3@16 f 0
( i )~pi 1

!# f 0
( j )~pj !@16 f 0

( j )~pj 1
!#

3@gi~pW i 1
!2gi~pW i !#dG i 1

dG jdG j 1
, ~5!

Ŝi j
( j )gj5E W12~pW i ,pW j upW i 1

,pW j 1
!@16 f 0

( i )~pi !#
21

3@16 f 0
( i )~pi 1

!# f 0
( j )~pj !@16 f 0

( j )~pj 1
!#

3@gj~pW j 1
!2gj~pW j !#dG i 1

dG jdG j 1
. ~6!
m
ex

b

03120
Hereafter, the upper~lower! signs correspond to bosons~fer-
mions!, Ŝii are the linearized collision operators of particl
of the same species,Ŝi j

( i ) and Ŝi j
( j ) are the components of th

linearized operators of cross collisions that act in the spa
Ri andRj , respectively, andL̂ i are the operators describin
the particle-macron collisions. In the framework of the Lo
entz approximation the last operators read@10#

L̂ igi5NE W~pW i upW i 1
!@g~pW i 1

!2g~pW i !#d„« i~pi !

2« i~pi 1
!…dG i 1

~7!

whereN is the macron number density.
In order to inverse the collision operator in Eq.~3! we

proceed with an analysis of the kernels of the collision o
erators introduced above. For the sake of brevity we ass
ate with then-dimensional orthonormal basis$uf i&% i 51

n the
projectorP of the form

P@$uf&% i 51
n ] 5(

i 51

n

uf i&^f i u. ~8!

Let us consider a set of vectors defined by
uel
k&5

~^p1up1&1^p2up2&2!2(k21)/2

@2~22 l 22l 2!p#21/2zuup1 ,p2& zz
U „Y1

1~u1 ,f1!1 lY1
2 l~u1 ,f1!…^p2up2&2

k21p1

~21!k21
„Y1

l ~u2 ,f2!1 lY1
2 l~u2 ,f2!…^p1up1&1

k21p2
L ,

ue3
k&5

@^«1~p1!u«1~p1!&1^«2~p2!u«2~p2!&2#2(k21)/2

zuu«1~p1!,«2~p2!& zz U «1~p1!^«2~p2!u«2~p2!&2
k21

~21!k21«2~p2!^«1~p1!u«1~p1!&1
k21L , ~9!

ue4
k&5

~^1u1&1^1u1&2!2(k21)/2

zuu1,1& zz U ^1u1&2
k21

~21!k21^1u1&1
k21L ~ l 50,1,2;k51,21!
ion
e
e-
i-
he
can

-

whereYl
m(u i ,f i) ( i 51,2) are the spherical harmonics@11#

expressed in terms of spherical coordinates (pi ,u i ,f i) in the
momentum spaces. The double bracketsuu•••uu denote the
norm of the vector. Let us also note that^el

1uel
2&50.

The set of vectors introduced above makes it possible
find the kernels of the collision operators in an explicit for
The conservation laws in the cross collisions can be
pressed as

S12uel
1&5u0&, ~10!

with l 50,21,1 corresponding to the conservation ofz, x,
and y components of the particle momenta, andl 53,4 cor-
responding to the conservation of energy and particle num
density, respectively,u0&[u0,0& t.
to
.
-

er

It should be stressed that the collision operatorsS11 and
S12 have kernels of different dimensions. The cross-collis
operatorS12 has five collision invariants due to the abov
conservation laws in collisions of particles of different sp
cies. The operatorS11 has ten independent collision invar
ants: five for mutual collisions of the particles of each of t
two species. Thus the corresponding conservation laws
be written as

S11uel
1,2&5u0&. ~11!

The set of vectors~9! must be properly normalized to con
stitute a basis in the null space of the operatorS11. This basis
is found to be
4-2
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uj0,1,2
k &[ue0,1,21

k &, uj3,4
1 &5

1

A2~16^e3
1ue4

1&!
~ ue3

1&6ue4
1&),

uj3
2&5

~E2P@ uj3
1&,uj4

1&]) ue3
2&

A^e3
2u~E2P@ uj3

1&,uj4
1&#)ue3

2&
,

uj4
2&5

~E2P@ uj3
1&,uj4

1&,uj3
2&]) ue4

2&

A^e4
2u~E2P@ uj3

1&,uj4
1&,uj3

2&]) ue4
2&

, ~12!

so that^j l
kujm

n &5d l
md k

n , whered l
m is the Kronecker symbo

andE is the unity operator.
The vectorsuj l

1& l 50
4 form the basis of the kernel of opera

tor S12. This allows one to introduce the projectors

P125(
i 50

4

uj i
1&^j i

1u, P115P121(
i 50

4

uj i
2&^j i

2u ~13!

into the kernels of the operatorsS12 andS11, respectively.
The structure of the kernel of operatorL merits a few

comments. In the framework of the Lorentz approximati
@10#, the particle-macron collisions lead to a change in
direction of particle motion so that their energy remains u
changed. The energy conservation law in the particle-mac
collisions is reflected by thed factor in Eq.~7!. Hence, the
collision operatorsL̂ i act only on the polar and azimutha
components of an arbitrary function of the momentum. Th
any vector ofR formed by the angle independent functio
belongs to the kernel ofL. The basis of the kernel ofL can be
obtained by applying the Gram-Schmidt procedure@11# to
the set of vectors constituted by monomials of the fo
$up1

n,0& t,u0,p2
n& t%n50

` . For our purposes, however, it i
enough to introduce the projectorPL into the kernel ofL
associated with the above basis by means of formula~8!.
Relations of further importance are

P1[P12PL5(
l 53

4

uj l
1&^j l

1u,

P2[~P112P12!PL5(
l 53

4

uj l
2&^j l

2u. ~14!

The projectors derived above can be conveniently use
solve the kinetic equation~3! in operator form. Projecting the
latter onto the orthogonal subspaces associated with the
jectorsE2P1 , P12(E2PL), P2, and P1 one finds, respec
tively,

S (
i 51

2

~E2P1i !S1i~E2P1i !1~E2PL!L~E2PL!D ug&

5~E2P1!uV&, ~15!

P12~E2PL!L~E2PL!ug&5P12~E2PL!uV&, ~16!

P2S12~E2P12!ug&5P2uV&, P1uV&50. ~17!
03120
e
-
n

,

to

ro-

BecausePLuV&50, the second equality in Eq.~17! is ful-
filled trivially and can be omitted. According to the firs
equality in Eq.~17! the vectorS12ug& must belong to the
kernel of projectorP2.

The operator on the left side of Eq.~15! can be inverted
uniquely. This follows from the fact that the latter present
sum of the negative operators of the form (E2Pi j )Si j (E
2Pi j ). Thus, the general solution of the kinetic equation~3!
can be written in the form

ug&5ug0&1ug8& ~18!

with an arbitrary vectorug0& belonging to the subspace ass
ciated with the projectorP1 and

ug8&5S (
i 51

2

~E2P1i !S1i~E2P1i !1~E2PL!

3L~E2PL!D 21

~E2P1!uV&. ~19!

The exact solution~18!,~19! of the kinetic problem can be
used for analysis of the steady nonequilibrium states of
two-component gas mixture. Two further comments are
portant. First, the solution~18! has no restrictions on the
particle energy-momentum relation. That is, it can be app
to quasiparticle gas mixtures also. Second, the result~19!
takes into account different dimensionalities of the kernels
the operatorsS12 and S11. It gives the correct limits when
certain types of collision are neglected.

The term ug0& in Eq. ~18! presents the solution of th
homogeneous equation~3! with uV&50. The termug8& ex-
presses a particular solution of the nonhomogeneous e
tion ~3!. It should be emphasized that this latter term m
also fulfill equality ~16!. In order to illustrate that, let us
consider the hydrodynamic limitL[0 (PL[E). For brevity
we also setXW i50W . In this case, condition~16! reduces to
P12uV&50. In explicit form this reads

]

]rW
(
l 51

2 E pW l

]« l

]pW l

f 0
( l )dG l50. ~20!

Equality ~20! yields nothing but the condition of mechanic
equilibrium in a closedparticle system: the total pressu
must be constant all over its volume. The presence of m
crons makes a particle system unclosed. Condition~20!
breaks down due to particle-macron collisions. In order
obtain the condition describing the steady state of a sys
in this case one has to analyze the solution~19! with LÞ0.

III. A MODEL FOR THE COLLISION OPERATOR

Our next step is to derive a model representation for
collision operators to analyze the solution~18! in physically
explicit terms. In order to be physically reliable, our mod
has to reflect the following essential features of true collis
operators.~1! The model collision operators must satis
conditions~10! and~11! expressing the conservation laws
the collisions.~2! Linearized collision operators must be se
4-3
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A. I. CHERVANYOV PHYSICAL REVIEW E 64 031204
adjoint. ~3! The H theorem@10# must be satisfied.
According to the first two conditions the collision oper

tors must satisfy the relations

S1i ug&5~E2P1i !S1i~E2P1i !ug& ~ i 51,2!. ~21!

Within linear theory, the average effect of collisions reduc
to a change in the distribution function by a small amou
proportional to the correctionug&. The coefficients of propor-
tionality, the so-called collision frequencies@1,10#, qualita-
tively describe the effect of collisions. Extending the idea
this commonly used trick we approximateS11 and S12 by
multiplication operators by taking into account conditio
~21!. This results in the model

S1i5~E2P1i !n̂1i~E2P1i ! ~ i 51,2! ~22!

where n̂115diag$2n11,2n22% and n̂125diag$2n12,2n21%
are diagonal matrices with real elements.

Let us emphasize that the collision frequenciesn i j must
be positive. This follows from theH theorem written in the
form

^guS111S12ug&<0. ~23!

Condition ~23! can be derived by taking the time derivativ
of the system entropy

S52(
l 51

2 E @ f l ln f l7~16 f l !ln~16 f l !#dG l ~24!

and linearizing the result with respect toug&.
According to condition~23! the model operators must b

negative and, consequently, the above mentioned param
must satisfyn i j .0. Let us also note that the equals sign
~23! holds if ~and only if! the vectorug& belongs to the kerne
of the operatorS111S12.

Another restriction related to the values ofn i j arises from
their physical nature, namely, the frequenciesn12 andn21 are
not independent. Indeed, according to Eqs.~5! and ~6! the
following equality holds:

E w̄12 f 0
(1)8dG15E w̄21f 0

(2)8dG2 ~25!

where

w̄i j ~pW i !5E W12~pW i ,pW j 1
upW i 2

,pW j 3
!@16 f 0

( i )~pi !#
21

3@16 f 0
( i )~pi 2

!# f 0
( j )~pj 1

!

3@16 f 0
( j )~pj 3

!#dG i 2
dG j 1

dG j 3
. ~26!

Applying the relation~25! for the true collision integrals to
its model presentation~22! one finds

E n12 f 0
(1)8dG15E n21 f 0

(2)8dG2 . ~27!
03120
s
t
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The relation~27! is particularly simple for the momentum
independent frequenciesn12 andn21. It reads

n12E f 0
(1)8dG15n21E f 0

(2)8dG2 . ~28!

In the case of Maxwell distribution functionsf 0
( i ) , equality

~28! reduces to the relation used in@8#.
We conclude this section with further simplification of th

model ~22!. Because the model operators~22! present the
operators of multiplication, the collision operatorS111S12

1L maps the subspace ofR associated withY1
0(u i) harmon-

ics into itself. It allows one to look for a particular solutio
ug8& of the kinetic equation~3! in the subspace correspond
ing to the same harmonic as that to which the vectoruV&
belongs. The corresponding nonhomogeneous equation
ug8& reads

F S E2(
i 51

2

ue0
i &^e0

i u D n̂11S E2(
i 51

2

ue0
i &^e0

i u D 1~E2ue0
1&

3^e0
1u!n̂12~E2ue0

1&^e0
1u!1 n̂LG ug8&5uV& ~29!

wheren̂L5diag$2n1L ,2n2L%.
The explicit forms for the particle-macron collision fre

quenciesn1L ,n2L are defined by the cross sections of partic
scattering by macrons. For a classical gas of particles w
the massmi this reads@10#

n iL5
pi

A2miT
y iL ,

y iL52pNA2T

mi
E @12P1~cosa!#s i~pi ,a!sinada

~30!

wheres i(pi ,a)sinada are the differential scattering cros
sections of the quasiparticles of the speciesi andP1(cosa) is
the Legendre polynomial of the first order.

The model presentation of the collision operator~22!
makes it possible to obtain observable physical results av
ing exact consideration of the nonessential details of the
terparticle interaction. It allows one to investigate explicit
the effect of particle-macron collisions on the formation o
steady nonequilibrium state of a gas mixture.

IV. THE RIGOROUS SOLUTION OF THE MODEL
KINETIC EQUATION IN THE STATIONARY CASE

The model kinetic equation~29! can be trivially reduced
to a set of linear equations in the moments of the distribut
functions. For the sake of simplicity we facilitate the solutio
of Eq. ~29! by further considering that the frequenciesn1i are
momentum independent. Then the set of vectorsue0

1&,ue0
2&

presents an irreducible group with respect to multiplicat
by the operatorsn̂1i . Thus we can write
4-4
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n̂1i ue0
l &5 (

m51

2

k i
(m,l )ue0

m&, k i
(m,l )5^e0

mun̂1i ue0
l &. ~31!

Using the latter equalities we represent Eq.~29! in the form

ug8&5S (
i 51

2

n̂1i1 n̂LD 21S uV&1(
i 51

2

(
l 51

2

k l i ue0
i &^e0

l ug8& D
~32!

wherek i j 5( l 51
2 k l

( i , j )(12d i
2d j

2d l
2).

Multiplying equality ~32! by the bra vectorŝe0
l u( l 51,2)

one derives the set of coupled equations in the mom
^e0

l ug8&. After some elementary algebra one finds

^e0
l ug8&5D21FVlS 12 (

m51

2

k imh imD
1Vi (

m51

2

k imh lmG ~ l ,i 51,2; iÞ l ! ~33!

whereD512( i ,l 51
2 k i l h i l 1kh, x5x12

2 2x11x22(x5k,h),

hml5^e0
muS (

i 51

2

n̂1i1 n̂LD 21

ue0
l &,

Vl5^e0
l uS (

i 51

2

n̂1i1 n̂LD 21

uV&. ~34!

The moments~33! are to be substituted in expression~32!.
The result reads

ug8&5S (
i 51

2

n̂1i1 n̂LD 21F uV&1D21(
l 51

2

ue0
l &

3S (
m51

2

k lmVm1k~Vlh i i 2Vih i l !D G ~ i 51,2; iÞ l !.

~35!

The result~35! presents the general solution of the kine
problem~3! in the framework of approximation~22!. It ex-
presses the corrections to the equilibrium distribution fu
tions in terms of the matrix elements~31!,~34!. Because the
operatorsn̂1i , n̂L are presented in the form of diagonal m
trices, the explicit expressions for the above matrix eleme
can be written down trivially.

Let us emphasize that the results~35! and ~33! imply no
restrictions to the kind of particle statistics. They can stric
be applied to gases of fermions and bosons and to thei
nary mixtures. In addition the results obtained allow one
extend the framework of the conventional Lorentz appro
mation @10# to consideration of diffusion of mixtures o
quantum gases.

In order to give insight into physical applications of th
presented mathematical formalism we will now conside
simple illustrative example. Let us investigate the phon
contribution to the Knudsen effect in a classical~Boltzmann!
03120
ts

-

ts

i-
o
-

a
n

gas using the results~33! and~35!. For the sake of simplicity
we neglect the phonon-macron collisions (n2L50) and con-
sider thatn1L@n11,n12 to ensure the Knudsen regime. W
also use the simple evaluation~30! for n1L and putm250,
«25cp2 for a phonon gas. The classical Boltzmann~phonon!
gas is regarded as species 1~2! in the general formulas.

The condition

^p1ug1&150

ensuring the absence of particle mass flow can be expre
explicitly in the form of the relation between temperatu
and gas number density gradients. Using Eq.~33! one finds
after a significant simplification

¹~nBAT!1
4

3

Eph

AT

¹T

T
50 ~36!

where nB is the particle number density,Eph
5(4p5T/15)(T/2p\c)3 is the energy of the phonon gas p
unit volume andc is the sound velocity.

The first summand in Eq.~36! presents the gradient of th
conventional Knudsen parameter@10#. The second term de
scribes the effect of the phonon drag on the formation of
Knudsen steady state in a classical gas. According to
~36!, the phonon drag leads to an effective increase in
number density gradient equilibrating the phonon contrib
tion to the gas thermal diffusion.

V. CONCLUSIONS

The steady nonequilibrium state of a two-component
mixture in the presence of macroscopic scatterers was in
tigated. An analysis of the solvability of the kinetic equatio
was performed. The solution of the kinetic equation was p
sented as the sum of the particular solution of the nonho
geneous equation and the general solution of the corresp
ing homogeneous one. A set of projectors~13! to the kernel
of the collision operators was introduced. It allowed us
obtain the particular solution of the operator kinetic equati
As a result, the general solution~18!,~19! of the kinetic prob-
lem ~3! was obtained in the operator form.

A model presentation~22! was derived for the interpar
ticle collision operators. This presentation is based on
form of the exact solution~18!,~19! obtained and the essen
tial features of the true collision operator reflected in t
model. The proposed model of the collision operator allo
it to introduce the collision frequencies self-consistently. T
exact relations between the cross-collision frequencies~25!,
~27! were obtained and used in the model.

The rigorous solution~35! of the model kinetic equation
~29! was obtained. The moments~33! of the distribution
functions were calculated. The results obtained are valid
any kind of particle statistics and arbitrary relations betwe
the collision frequencies. They describe an effect of diffus
of a quantum gas mixture in the presence of macrosco
scatterers.
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